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SPUs, PPU and RSX® access main via shared bus  
RSX® pulls from main to video
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Fully programmable pipeline: shader model 3.0
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HD Ready (720p/1080p)
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1080p = 2 073 600 pixels
a high end GPU adapted to work with the Cell 
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Inconvenience:
Fixed point functions
No shaders: needed to be added
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Make the GPU wait on another GPU event or on PPU
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Embedded system: PPU usage needs to be limited, 
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load for some existing features:

Ex: Attribute set

Synchronizations: 
Wait on or check GPU progress
Make the GPU wait on another GPU event or on PPU
Provide sync APIs for PPU and for SPU

Memory usage hints
For texture, VBO, PBO, render-targets

PPU specific extensions:
Embedded system: PPU usage needs to be limited, 
some extensions are added to decrease the PPU 
load for some existing features:

Ex: Attribute set



Shading languageShading language
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A low level graphics API exists:

proprietary
small and simple
let the user create and send command buffers
deep knowledge of the RSX® internals needed to 
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5 years old HW, at that time PC games were around 30 000 
polys, it's only with GF3 that gamers started seeing 100 000 
polys in games.
compare to 480p FB: 1 poly for 4 pixels

10 MB of 8 bits or 4 bits textures
Rendering

Multi pass for lightmaps
Multi pass for specular
Projected shadow
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color and lighting pass: diffuse, normal, specular, 
4xAA
Post effects: blooming, tone mapping,…

Maximized Framebuffer Read/Write bandwidth
20 millions+ rasterized pixels
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Project Folding @ home : provides a PC client 
PS3 client created in few months by SCE
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intensive computing application for PS3

maximize SPU processing
PPU schedules jobs

visualization on PS3
Arbitrary complex molecule rendering challenge
Geometries generated in the fragment program
PSGL MRTs
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month

Estimation: x2 the current Folding @ home 
computing power of 210 T flops  
Up to 20 times faster than a PC
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