
Introduction to the graphics
pipeline of the PS3

Introduction to the graphics
pipeline of the PS3

: : Cedric Perthuis: : Cedric Perthuis

IntroductionIntroduction
An overview of the hardware architecture with a
focus on the graphics pipeline, and an
introduction to the related software APIs

Aimed to be a high level overview for academics
and game developers

No announcement and no sneak previews of
PS3 games in this presentation

An overview of the hardware architecture with a
focus on the graphics pipeline, and an
introduction to the related software APIs

Aimed to be a high level overview for academics
and game developers

No announcement and no sneak previews of
PS3 games in this presentation

OutlineOutline
Platform Overview
Graphics Pipeline
APIs and tools
Cell Computing example
Conclusion

Platform Overview
Graphics Pipeline
APIs and tools
Cell Computing example
Conclusion

Platform overviewPlatform overview
Processing

3.2Ghz Cell: PPU and 7 SPUs
PPU: PowerPC based, 2 hardware threads
SPUs: dedicated vector processing units

RSX®: high end GPU
Data flow

IO: BluRay, HDD, USB, Memory Cards, GigaBit
ethernet
Memory: main 256 MB, video 256 MB
SPUs, PPU and RSX® access main via shared bus
RSX® pulls from main to video

Processing
3.2Ghz Cell: PPU and 7 SPUs

PPU: PowerPC based, 2 hardware threads
SPUs: dedicated vector processing units

RSX®: high end GPU
Data flow

IO: BluRay, HDD, USB, Memory Cards, GigaBit
ethernet
Memory: main 256 MB, video 256 MB
SPUs, PPU and RSX® access main via shared bus
RSX® pulls from main to video

PS3 ArchitecturePS3 Architecture

Cell
3.2 GHz

RSX®XDRAM
256 MB

I/O
Bridge

HD/HD
SD

AV out

20GB/s
25.6GB/s

15GB/s

2.5GB/s

2.5GB/s

BD/DVD/CD
ROM Drive

54GB USB 2.0 x 6

Gbit Ether/WiFi Removable Storage
MemoryStick,SD,CF

BT Controller

GDDR3
256 MB

22.4GB/s

Focus on the Cell SPUsFocus on the Cell SPUs
The key strength of the PS3

Similar to PS2 Vector Units, but order of magnitude
more powerful
Main Memory Access via DMA: needs software
cache to do generic processing
Programmable in C/C++ or assembly
Programs: standalone executables or jobs

Ideal for sound, physics, graphics data
preprocessing, or simply to offload the PPU

The key strength of the PS3
Similar to PS2 Vector Units, but order of magnitude
more powerful
Main Memory Access via DMA: needs software
cache to do generic processing
Programmable in C/C++ or assembly
Programs: standalone executables or jobs

Ideal for sound, physics, graphics data
preprocessing, or simply to offload the PPU

The Cell ProcessorThe Cell Processor

SPE0
LS

(256KB)

DMA

SPE1
LS

(256KB)

DMA

MIC
Memory
Interface
Controller

XIO

SPE2
LS

(256KB)

DMA

SPE3
LS

(256KB)

DMA

SPE4
LS

(256KB)

DMA

SPE5
LS

(256KB)

DMA

SPE6
LS

(256KB)

DMA

PPE
L1 (32 KB I/D)

L2
(512 KB)

Flex-
IO1

Flex-
IO0

I/O

I/O

I/O

The RSX® Graphics ProcessorThe RSX® Graphics Processor
Based on a high end NVidia chip

Fully programmable pipeline: shader model 3.0
Floating point render targets
Hardware anti-aliasing (2x, 4x)
256 MB of dedicated video memory

PULL from the main memory at 20 GB/s
HD Ready (720p/1080p)

720p = 921 600 pixels
1080p = 2 073 600 pixels
a high end GPU adapted to work with the Cell

Processor and HD displays

Based on a high end NVidia chip
Fully programmable pipeline: shader model 3.0
Floating point render targets
Hardware anti-aliasing (2x, 4x)
256 MB of dedicated video memory

PULL from the main memory at 20 GB/s
HD Ready (720p/1080p)

720p = 921 600 pixels
1080p = 2 073 600 pixels
a high end GPU adapted to work with the Cell

Processor and HD displays

The RSX® parallel pipelineThe RSX® parallel pipeline
Command processing

Fifo of commands, flip and sync
Texture management

System or video memory
storage mode, compression

Vertex Processing
Attribute fetch, vertex program

Fragment Processing
Zcull, Fragment program, ROP

Command processing
Fifo of commands, flip and sync

Texture management
System or video memory
storage mode, compression

Vertex Processing
Attribute fetch, vertex program

Fragment Processing
Zcull, Fragment program, ROP

Particle system example on PS3
Hardware

Particle system example on PS3
Hardware

Objective: to update a particle system
The PPU prepares the rendering

schedule SPU jobs to compute batches of particles
push RSX® commands to pull the VBO from the main
memory
make the render call

The SPUs fill a VBO with positions, normals, etc
receive a job
compute particles properties
DMA the result directly to VBO
release RSX® semaphore

fundamental hardware difference with other
platforms: the SPUs are part of the pipeline

Objective: to update a particle system
The PPU prepares the rendering

schedule SPU jobs to compute batches of particles
push RSX® commands to pull the VBO from the main
memory
make the render call

The SPUs fill a VBO with positions, normals, etc
receive a job
compute particles properties
DMA the result directly to VBO
release RSX® semaphore

fundamental hardware difference with other
platforms: the SPUs are part of the pipeline

API differences with the PC
approach

API differences with the PC
approach

Pass-through driver
no driver level optimization, no batching, no shader
modification

direct access to RSX® via memory mapped
“registers”

restricted to the system

deferred access to RSX® via a fifo of commands
system and user

Pass-through driver
no driver level optimization, no batching, no shader
modification

direct access to RSX® via memory mapped
“registers”

restricted to the system

deferred access to RSX® via a fifo of commands
system and user

PSGL: the high level graphics APIPSGL: the high level graphics API
Needed a standard: practical and extensible

the choice was OpenGL ES 1.0
Why not a subset of OpenGL ?

Mainly needed conformance tests
Benefits:

pipeline state management
Vertex arrays
Texture management
Bonus: Fixed pipeline
Only ~20 entry points for fixed pipeline
Fog, light, material, texenv

Inconvenience:
Fixed point functions
No shaders: needed to be added

Needed a standard: practical and extensible
the choice was OpenGL ES 1.0

Why not a subset of OpenGL ?
Mainly needed conformance tests

Benefits:
pipeline state management
Vertex arrays
Texture management
Bonus: Fixed pipeline
Only ~20 entry points for fixed pipeline
Fog, light, material, texenv

Inconvenience:
Fixed point functions
No shaders: needed to be added

PSGL: modern GPU extensionsPSGL: modern GPU extensions
OpenGL ES 1.1OpenGL ES 1.1

VBOVBO
FBOFBO
PBOPBO
Cube Map, Cube Map, texgentexgen

Primitives:Primitives:
Quads, Quads_stripsQuads, Quads_strips
primitive restartprimitive restart
InstancingInstancing

Queries and Conditional Queries and Conditional
RenderingRendering

More data typesMore data types
ex: half_floatex: half_float

Textures:Textures:
Floating point texturesFloating point textures
DXTDXT
3D3D
non power of 2non power of 2
Anisotropic filtering, Anisotropic filtering,
Min/Max LOD, LOD BiasMin/Max LOD, LOD Bias
Depth texturesDepth textures
Gamma correctionGamma correction
Vertex TextureVertex Texture

PSGL: PS3 specific extensionsPSGL: PS3 specific extensions
Synchronizations:

Wait on or check GPU progress
Make the GPU wait on another GPU event or on PPU
Provide sync APIs for PPU and for SPU

Memory usage hints
For texture, VBO, PBO, render-targets

PPU specific extensions:
Embedded system: PPU usage needs to be limited,
some extensions are added to decrease the PPU
load for some existing features:

Ex: Attribute set

Synchronizations:
Wait on or check GPU progress
Make the GPU wait on another GPU event or on PPU
Provide sync APIs for PPU and for SPU

Memory usage hints
For texture, VBO, PBO, render-targets

PPU specific extensions:
Embedded system: PPU usage needs to be limited,
some extensions are added to decrease the PPU
load for some existing features:

Ex: Attribute set

Shading languageShading language
CG: high level shader language

Support Cg 1.5
PS3 specific compiler
Mostly compatible with other languages like HLSL
Tools: FX composer for PS3

CG: runtime
Direct access to shader engine registers or via CG
parameter
shared and unshared parameters
CG FX runtime: techniques, render states, textures

CG: high level shader language
Support Cg 1.5
PS3 specific compiler
Mostly compatible with other languages like HLSL
Tools: FX composer for PS3

CG: runtime
Direct access to shader engine registers or via CG
parameter
shared and unshared parameters
CG FX runtime: techniques, render states, textures

Performance analysisPerformance analysis
PSGL HUD: runtime performance analyzer

display global statistics and hardware counters
explore objects in video and main memory
explore individual draw calls
profile graphics API calls

PSGL HUD: runtime performance analyzer
display global statistics and hardware counters
explore objects in video and main memory
explore individual draw calls
profile graphics API calls

PSGL HUDPSGL HUD

Call ViewCall View

Memory viewMemory view

Executive summaryExecutive summary

Beyond High Level APIsBeyond High Level APIs
A low level graphics API exists:

proprietary
small and simple
let the user create and send command buffers
deep knowledge of the RSX® internals needed to
really take full advantage of it

A low level graphics API exists:
proprietary
small and simple
let the user create and send command buffers
deep knowledge of the RSX® internals needed to
really take full advantage of it

A leap forward in graphicsA leap forward in graphics
Gamer expectations have changed:

Higher resolutions
Deeper colors
Larger and deeper environment
More environmental and lighting effects

Game console developer expectations have
changed too

Gamer expectations have changed:
Higher resolutions
Deeper colors
Larger and deeper environment
More environmental and lighting effects

Game console developer expectations have
changed too

Typical PS2 title graphics budgetTypical PS2 title graphics budget
Assets

60 000 polygons
5 years old HW, at that time PC games were around 30 000
polys, it's only with GF3 that gamers started seeing 100 000
polys in games.
compare to 480p FB: 1 poly for 4 pixels

10 MB of 8 bits or 4 bits textures
Rendering

Multi pass for lightmaps
Multi pass for specular
Projected shadow

Assets
60 000 polygons

5 years old HW, at that time PC games were around 30 000
polys, it's only with GF3 that gamers started seeing 100 000
polys in games.
compare to 480p FB: 1 poly for 4 pixels

10 MB of 8 bits or 4 bits textures
Rendering

Multi pass for lightmaps
Multi pass for specular
Projected shadow

Typical Next Gen graphics budgetTypical Next Gen graphics budget
Assets

800 000 polygons : compare to 720p FB
150 MB of textures in video memory

Rendering
Z pass
2 shadow maps 1024x1024: blur
color and lighting pass: diffuse, normal, specular,
4xAA
Post effects: blooming, tone mapping,…

Maximized Framebuffer Read/Write bandwidth
20 millions+ rasterized pixels

Assets
800 000 polygons : compare to 720p FB
150 MB of textures in video memory

Rendering
Z pass
2 shadow maps 1024x1024: blur
color and lighting pass: diffuse, normal, specular,
4xAA
Post effects: blooming, tone mapping,…

Maximized Framebuffer Read/Write bandwidth
20 millions+ rasterized pixels

Example of intensive computing
and visualization on PS3

Example of intensive computing
and visualization on PS3

Cure@PS3
Project Folding @ home : provides a PC client
PS3 client created in few months by SCE
presented at the Game Convention 2006 in Leipzig
intensive computing application for PS3

maximize SPU processing
PPU schedules jobs

visualization on PS3
Arbitrary complex molecule rendering challenge
Geometries generated in the fragment program
PSGL MRTs

Cure@PS3
Project Folding @ home : provides a PC client
PS3 client created in few months by SCE
presented at the Game Convention 2006 in Leipzig
intensive computing application for PS3

maximize SPU processing
PPU schedules jobs

visualization on PS3
Arbitrary complex molecule rendering challenge
Geometries generated in the fragment program
PSGL MRTs

Cure@PS3: proteinCure@PS3: protein

Cure@PS3: protein + water Cure@PS3: protein + water

Cure@PS3 : what if...Cure@PS3 : what if...
What if it became a PS3 screensaver ?
Running on 1% of the PS3 sold during the 1st
month

Estimation: x2 the current Folding @ home
computing power of 210 T flops
Up to 20 times faster than a PC

What if it became a PS3 screensaver ?
Running on 1% of the PS3 sold during the 1st
month

Estimation: x2 the current Folding @ home
computing power of 210 T flops
Up to 20 times faster than a PC

ConclusionConclusion
Thank you for attending
Questions ?

Cedric_Perthuis @ playstation.sony.com

Thank you for attending
Questions ?

Cedric_Perthuis @ playstation.sony.com

	Introduction
	Outline
	Platform overview
	PS3 Architecture
	Focus on the Cell SPUs
	The Cell Processor
	The RSX® Graphics Processor
	The RSX® parallel pipeline
	Particle system example on PS3 Hardware
	API differences with the PC approach
	PSGL: the high level graphics API
	PSGL: modern GPU extensions
	PSGL: PS3 specific extensions
	Shading language
	Performance analysis
	PSGL HUD
	Call View
	Memory view
	Executive summary
	Beyond High Level APIs
	A leap forward in graphics
	Typical PS2 title graphics budget
	Typical Next Gen graphics budget
	Example of intensive computing and visualization on PS3
	Cure@PS3: protein
	Cure@PS3: protein + water
	Cure@PS3 : what if...
	Conclusion

