
OpenGL Performance Tuning

Evan Hart – ATI

Pipeline slides courtesy John Spitzer -
NVIDIA

Overview

• What to look for in tuning
• How it relates to the graphics pipeline
• Modern areas of interest

– Vertex Buffer Objects
– Shader performance

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Simplified Graphics Pipeline

Vertices Pixels

Possible Pipeline Bottlenecks

CPU transfer transform raster texture fragment

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

frame
buffer

Geometry
StorageCPU RasterizerGeometry

Processor

CPU/Bus
Bound Vertex Bound Pixel Bound

Battle Plan for Better Performance

• Locate the bottleneck(s)
• Eliminate the bottleneck (if

possible)
– Decrease workload of

the bottlenecked stage
• Otherwise, balance the

pipeline
– Increase workload of

the non-bottlenecked stages:

Bottleneck Identification
Run App Vary FB FPS

varies?
FB

limited

Vary texture
size/filtering

FPS
varies?

Vary
resolution

FPS
varies?

Texture
limited

Vary
fragment

instructions

FPS
varies?

Vary
vertex

instructions

FPS
varies?

Transform
limited

Vary
vertex size/
AGP rate

FPS
varies?

Transfer
limited

Fragment
limited

Raster
limited

CPU
limited

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Pixel Bound

CPU Bottlenecks

CPU/Bus
Bound Vertex Bound

CPU Bottlenecks

• Application limited (most games are in some
way)

• Driver or API limited
– Too many state changes per draw
– Non-optimal paths

• Use VTune (Intel performance analyzer)
– caveat: truly GPU-limited games hard to

distinguish from pathological use of API

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Pixel Bound

Geometry Transfer
Bottlenecks

CPU/Bus
Bound Vertex Bound

Geometry Transfer Bottlenecks

• Vertex data problems
– size issues (just under or over 32 bytes)
– non-native types (e.g. double, packed byte

normals)
• Using the wrong API calls

– Immediate mode, non-accelerated vertex arrays
– Non-indexed primitives (e.g. glDrawArrays)
– Prefer glDrawRangeElements over

glDrawElements
• AGP misconfigured or aperture set too small

Optimizing Geometry Transfer
• Dynamic geometry - use

ARB_vertex_buffer_object
– vertex size ideally multiples of 32 bytes
– access vertices in sequential pattern
– always use indexed primitives (i.e.

glDrawElements)
– 16 bit indices can be faster than 32 bit
– try to batch at least 100 tris/call

• Static geometry - can use display lists

Geometry Transform Bottlenecks

CPU transfer transform raster texture fragment

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

frame
buffer

Geometry
StorageCPU RasterizerGeometry

Processor

CPU/Bus
Bound Vertex Bound Pixel Bound

Geometry Transform Bottlenecks

• Too many vertices
• Too much computation per vertex
• Vertex cache inefficiency

Too Many Vertices

• Maximize vertex cache usage with
locality of reference

• Use levels of detail (but beware of
CPU overhead)

• Use bump maps to fake geometric
details

Too Much Vertex Computation:
Fixed Function

• Avoid superflous work
– >3 lights (saturation occurs quickly)
– local lights/viewer, unless really necessary
– unused texgen or non-identity texture matrices

• Consider commuting to vertex program if a
good shortcut exists
– example: texture matrix only needs to be 2x2
– Fixed function already tuned for the HW

Too Much Vertex Computation:
Vertex Programs

• Move per-object calculations to CPU, save
results as constants

• Leverage full spectrum of instruction set (LIT,
DST, SIN,...)

• Leverage swizzle and mask operators to
minimize MOVs

• Consider using shader levels of detail

Vertex Cache Inefficiency

• Always use indexed primitives on high-poly
models

• Re-order vertices to be sequential in use (e.g.
NVTriStrip)

• Favor strip order over random order for
triangle lists

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Pixel Bound

Rasterization Bottlenecks

CPU/Bus
Bound Vertex Bound

Rasterization
• Rarely the bottleneck (exception: stencil shadow

volumes)
• Speed influenced primarily by size of triangles
• Also, by number of vertex attributes to be

interpolated
• Be sure to maximize depth culling efficiency

Maximize Depth Culling Efficiency
• Always clear depth at the beginning of each frame

– clear with stencil, if stencil buffer exists
– feel free to combine with color clear, if applicable

• Coarsely sort objects front to back
• Don’t switch the direction of the depth test mid-frame
• Constrain near and far planes to geometry visible in frame
• Avoid polygon offset unless you really need it
• NVIDIA advice

– use scissor and depth bounds test to minimize superfluous fragment
generation for stencil shadow volumes

• ATI advice
– avoid EQUAL and NOTEQUAL depth tests

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Pixel Bound

Texture Bottlenecks

CPU/Bus
Bound Vertex Bound

Texture Bottlenecks

• Running out of texture memory
• Poor texture cache utilization
• Excessive texture filtering

Conserving Texture Memory
• Texture resolutions should be only as big as

needed
• Avoid expensive internal formats

– Modern GPUs allow floating point formats
• Compress textures:

– Collapse monochrome channels into alpha
– Use 16-bit color depth when possible (environment

maps and shadow maps)
– Use DXT compression

• Be smart and use tools to selectively compress (ATI’s
Compressonator)

Poor Texture Cache Utilization

• Localize texture accesses
– beware of dependent texturing
– ALWAYS use mipmapping

• Avoid negative LOD bias to sharpen
– texture caches are tuned for standard LODs
– sharpening usually causes aliasing in the distance
– opt for anisotropic filtering over sharpening

Excessive Texture Filtering
• Use trilinear filtering only when needed

– trilinear filtering can cut fillrate in half
– typically, only diffuse maps truly benefit
– light maps are too low resolution to benefit
– environment maps are distorted anyway

• Use anisotropic filtering judiciously
– often more expensive than trilinear
– not useful for environment maps

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

CPU transfer transform raster texture fragment frame
buffer

Pixel Bound

Fragment Bottlenecks

CPU/Bus
Bound Vertex Bound

Fragment Bottlenecks

• Too many fragments
• Too much computation per fragment
• Unnecessary fragment operations

Too Many Fragments

• Follow prior advice for maximizing depth culling
efficiency

• Consider using a depth-only first pass
– shade only the visible fragments in subsequent

pass(es)
– improve fragment throughput at the expense of

additional vertex burden (only use for frames employing
complex shaders)

– Less helpful if opaque geometry is rendered front to
back

Too Much Fragment Computation

• Use a mix of texture and math instructions (they
often run in parallel)

• Move constant per-triangle calculations to vertex
program, send data as texture coordinates

• Do similar with values that can be linear
interpolated (e.g. fresnel)

• Consider using shader levels of detail

Framebuffer Bottlenecks

CPU transfer transform raster texture fragment

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

frame
buffer

Geometry
StorageCPU RasterizerGeometry

Processor

CPU/Bus
Bound Vertex Bound Pixel Bound

Minimizing Framebuffer Traffic
• Collapse multiple passes with longer shaders
• Turn off Z writes for transparent objects and multipass
• Question the use of floating point frame buffers
• Reduce number and size of render-to-texture targets

– Cube maps and shadow maps can be of small resolution and at 16-
bit color depth and still look good

– Try turning cube-maps into hemisphere maps for reflections instead
• Can be smaller than an equivalent cube map
• Fewer render target switches

– Reuse render target textures to reduce memory footprint

NVIDIA specific FB Optimizations

• Do not mask off only some color
channels unless really necessary

• Use 16-bit Z depth if you can get away
with it

Use Occlusion Query
• Use occlusion query to minimize useless

rendering
• It’s cheap and easy!
• Examples:

– multi-pass rendering
– rough visibility determination (lens flare,

portals)
• Better than glReadPixels
• Caveat: need time for query to process

Vertex Buffer Objects

• Improve geometry throughput and CPU
usage

• Provides extra information to the driver
• Can be 3-4x faster than regular vertex

arrays
• Can hurt performance in non-optimal

cases

VBO Quick Tips
• Do use static VBO’s for maximum

performance
• Do invalidate buffer contents on streaming

buffers to prevent synchronization
• Do update contiguous blocks of data in a

single operation
• Do set the usage flags properly
• Do use Element Array

VBO Don’ts

• Do not use glArrayElement
• Do not use non-native types

– Double, int, RGB color in ubyte format
• Do not make really small VBO’s
• Do not read VBO’s unnecessarily
• Do not use one massive VBO for

everything

Vendor Specific VBO Info
• NVIDIA

– Avoid Redundant calls to gl*Pointer
– Use the ‘first’ parameter of glDrawArrays
– Use BufferData instead of Map to replace

an entire buffer
• ATI

– Prefer BufferData and BufferSubData over
Map to reduce synchronization overhead

Shader Performance

• Generic category that covers many
areas of the pipeline

• Compilers do much of the work

General Shader Tips
• Lift constant or linear expressions to higher

levels
• Avoid excessive control flow
• Utilize built-in functions/operations

– Switch to specialized versions when you know
certain problem domain limits

• Avoid unnecessary complexity
– Compiler is likely better with the straight-forward

code

ATI Specific Shader Tips
• Be careful with unnecessary swizzles in

fragment shaders
– Not all swizzles are native

• Avoid unnecessary use of Rectangle
Textures

• Don’t use the derivative operator
• Check native instruction counts for ops

– Available in the ATI OpenGL SDK
• Try to use ALU normalization

GeForceFX-specific
Optimizations

• Use even numbers of texture instructions
• Use even numbers of blending (math) instructions
• Use normalization cubemaps to efficiently normalize

vectors
• Leverage full spectrum of instruction set (LIT, DST,

SIN,...)
• Leverage swizzle and mask operators to minimize

MOVs
• Minimize temporary storage

– Use 16-bit registers where applicable (most cases)
– Use all components in each (swizzling is free)

Conclusion
• Complex, programmable GPUs have

many potential bottlenecks
• Rarely is there but one bottleneck in a

game
• Understand what you are bound by in

various sections of the scene
– The skybox is probably texture limited
– The skinned, dot3 characters are probably

transfer or transform limited
• Exploit imbalances to get things for free

	OpenGL Performance Tuning
	Overview
	Simplified Graphics Pipeline
	Possible Pipeline Bottlenecks
	Battle Plan for Better Performance
	Bottleneck Identification
	CPU Bottlenecks
	CPU Bottlenecks
	Geometry Transfer Bottlenecks
	Optimizing Geometry Transfer
	Geometry Transform Bottlenecks
	Geometry Transform Bottlenecks
	Too Many Vertices
	Too Much Vertex Computation:Fixed Function
	Too Much Vertex Computation:Vertex Programs
	Vertex Cache Inefficiency
	Rasterization Bottlenecks
	Rasterization
	Maximize Depth Culling Efficiency
	Texture Bottlenecks
	Texture Bottlenecks
	Conserving Texture Memory
	Poor Texture Cache Utilization
	Excessive Texture Filtering
	Fragment Bottlenecks
	Fragment Bottlenecks
	Too Many Fragments
	Too Much Fragment Computation
	Framebuffer Bottlenecks
	Minimizing Framebuffer Traffic
	NVIDIA specific FB Optimizations
	Use Occlusion Query
	Vertex Buffer Objects
	VBO Quick Tips
	VBO Don’ts
	Vendor Specific VBO Info
	Shader Performance
	General Shader Tips
	ATI Specific Shader Tips
	GeForceFX-specific Optimizations
	Conclusion

