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Overview

• What to look for in tuning
• How it relates to the graphics pipeline
• Modern areas of interest

– Vertex Buffer Objects
– Shader performance



Frame
buffer

Fragment 
Processor

Texture 
Storage + 
Filtering

RasterizerGeometry 
Processor

Geometry 
StorageCPU

Simplified Graphics Pipeline

Vertices Pixels



Possible Pipeline Bottlenecks
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Battle Plan for Better Performance

• Locate the bottleneck(s)
• Eliminate the bottleneck (if 

possible)
– Decrease workload of

the bottlenecked stage
• Otherwise, balance the 

pipeline
– Increase workload of

the non-bottlenecked stages:
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CPU Bottlenecks

• Application limited (most games are in some 
way)

• Driver or API limited
– Too many state changes per draw
– Non-optimal paths

• Use VTune (Intel performance analyzer)
– caveat: truly GPU-limited games hard to 

distinguish from pathological use of API
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Geometry Transfer Bottlenecks

• Vertex data problems
– size issues (just under or over 32 bytes)
– non-native types (e.g. double, packed byte 

normals)
• Using the wrong API calls

– Immediate mode, non-accelerated vertex arrays
– Non-indexed primitives (e.g. glDrawArrays)
– Prefer glDrawRangeElements over 

glDrawElements
• AGP misconfigured or aperture set too small



Optimizing Geometry Transfer
• Dynamic geometry - use 

ARB_vertex_buffer_object
– vertex size ideally multiples of 32 bytes 
– access vertices in sequential pattern
– always use indexed primitives (i.e. 

glDrawElements)
– 16 bit indices can be faster than 32 bit
– try to batch at least 100 tris/call

• Static geometry - can use display lists



Geometry Transform Bottlenecks
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Geometry Transform Bottlenecks

• Too many vertices
• Too much computation per vertex
• Vertex cache inefficiency



Too Many Vertices

• Maximize vertex cache usage with 
locality of reference

• Use levels of detail (but beware of 
CPU overhead)

• Use bump maps to fake geometric 
details



Too Much Vertex Computation:
Fixed Function

• Avoid superflous work
– >3 lights (saturation occurs quickly)
– local lights/viewer, unless really necessary
– unused texgen or non-identity texture matrices

• Consider commuting to vertex program if a 
good shortcut exists
– example: texture matrix only needs to be 2x2
– Fixed function already tuned for the HW



Too Much Vertex Computation:
Vertex Programs

• Move per-object calculations to CPU, save 
results as constants

• Leverage full spectrum of instruction set (LIT, 
DST, SIN,...)

• Leverage swizzle and mask operators to 
minimize MOVs

• Consider using shader levels of detail



Vertex Cache Inefficiency

• Always use indexed primitives on high-poly 
models

• Re-order vertices to be sequential in use (e.g. 
NVTriStrip)

• Favor strip order over random order for 
triangle lists
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Rasterization
• Rarely the bottleneck (exception: stencil shadow 

volumes)
• Speed influenced primarily by size of triangles
• Also, by number of vertex attributes to be 

interpolated
• Be sure to maximize depth culling efficiency



Maximize Depth Culling Efficiency
• Always clear depth at the beginning of each frame

– clear with stencil, if stencil buffer exists
– feel free to combine with color clear, if applicable

• Coarsely sort objects front to back
• Don’t switch the direction of the depth test mid-frame
• Constrain near and far planes to geometry visible in frame
• Avoid polygon offset unless you really need it
• NVIDIA advice

– use scissor and depth bounds test to minimize superfluous fragment 
generation for stencil shadow volumes

• ATI advice
– avoid EQUAL and NOTEQUAL depth tests
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Texture Bottlenecks

• Running out of texture memory
• Poor texture cache utilization
• Excessive texture filtering



Conserving Texture Memory
• Texture resolutions should be only as big as 

needed
• Avoid expensive internal formats

– Modern GPUs allow floating point formats
• Compress textures:

– Collapse monochrome channels into alpha
– Use 16-bit color depth when possible (environment 

maps and shadow maps)
– Use DXT compression

• Be smart and use tools to selectively compress (ATI’s 
Compressonator)



Poor Texture Cache Utilization

• Localize texture accesses
– beware of dependent texturing
– ALWAYS use mipmapping

• Avoid negative LOD bias to sharpen
– texture caches are tuned for standard LODs
– sharpening usually causes aliasing in the distance
– opt for anisotropic filtering over sharpening



Excessive Texture Filtering
• Use trilinear filtering only when needed

– trilinear filtering can cut fillrate in half
– typically, only diffuse maps truly benefit
– light maps are too low resolution to benefit
– environment maps are distorted anyway

• Use anisotropic filtering judiciously
– often more expensive than trilinear
– not useful for environment maps
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Fragment Bottlenecks

• Too many fragments
• Too much computation per fragment
• Unnecessary fragment operations



Too Many Fragments

• Follow prior advice for maximizing depth culling 
efficiency

• Consider using a depth-only first pass 
– shade only the visible fragments in subsequent 

pass(es)
– improve fragment throughput at the expense of 

additional vertex burden (only use for frames employing 
complex shaders)

– Less helpful if opaque geometry is rendered front to 
back



Too Much Fragment Computation

• Use a mix of texture and math instructions (they 
often run in parallel)

• Move constant per-triangle calculations to vertex 
program, send data as texture coordinates

• Do similar with values that can be linear 
interpolated (e.g. fresnel)

• Consider using shader levels of detail



Framebuffer Bottlenecks
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Minimizing Framebuffer Traffic
• Collapse multiple passes with longer shaders
• Turn off Z writes for transparent objects and multipass
• Question the use of floating point frame buffers
• Reduce number and size of render-to-texture targets

– Cube maps and shadow maps can be of small resolution and at 16-
bit color depth and still look good

– Try turning cube-maps into hemisphere maps for reflections instead
• Can be smaller than an equivalent cube map
• Fewer render target switches

– Reuse render target textures to reduce memory footprint



NVIDIA specific FB Optimizations

• Do not mask off only some color 
channels unless really necessary

• Use 16-bit Z depth if you can get away 
with it



Use Occlusion Query
• Use occlusion query to minimize useless 

rendering
• It’s cheap and easy!
• Examples:

– multi-pass rendering
– rough visibility determination (lens flare, 

portals)
• Better than glReadPixels
• Caveat: need time for query to process



Vertex Buffer Objects

• Improve geometry throughput and CPU 
usage

• Provides extra information to the driver
• Can be 3-4x faster than regular vertex 

arrays
• Can hurt performance in non-optimal 

cases



VBO Quick Tips
• Do use static VBO’s for maximum  

performance
• Do invalidate buffer contents on streaming 

buffers to prevent synchronization
• Do update contiguous blocks of data in a 

single operation
• Do set the usage flags properly
• Do use Element Array



VBO Don’ts

• Do not use glArrayElement
• Do not use non-native types

– Double, int, RGB color in ubyte format
• Do not make really small VBO’s
• Do not read VBO’s unnecessarily
• Do not use one massive VBO for 

everything



Vendor Specific VBO Info
• NVIDIA

– Avoid Redundant calls to gl*Pointer
– Use the ‘first’ parameter of glDrawArrays
– Use BufferData instead of Map to replace 

an entire buffer
• ATI

– Prefer BufferData and BufferSubData over 
Map to reduce synchronization overhead



Shader Performance

• Generic category that covers many 
areas of the pipeline

• Compilers do much of the work



General Shader Tips
• Lift constant or linear expressions to higher 

levels
• Avoid excessive control flow
• Utilize built-in functions/operations

– Switch to specialized versions when you know 
certain problem domain limits

• Avoid unnecessary complexity
– Compiler is likely better with the straight-forward 

code



ATI Specific Shader Tips
• Be careful with unnecessary swizzles in 

fragment shaders
– Not all swizzles are native

• Avoid unnecessary use of Rectangle 
Textures

• Don’t use the derivative operator
• Check native instruction counts for ops

– Available in the ATI OpenGL SDK
• Try to use ALU normalization



GeForceFX-specific 
Optimizations

• Use even numbers of texture instructions
• Use even numbers of blending (math) instructions
• Use normalization cubemaps to efficiently normalize 

vectors
• Leverage full spectrum of instruction set (LIT, DST, 

SIN,...)
• Leverage swizzle and mask operators to minimize 

MOVs
• Minimize temporary storage

– Use 16-bit registers where applicable (most cases)
– Use all components in each (swizzling is free)



Conclusion
• Complex, programmable GPUs have 

many potential bottlenecks
• Rarely is there but one bottleneck in a 

game
• Understand what you are bound by in 

various sections of the scene
– The skybox is probably texture limited
– The skinned, dot3 characters are probably 

transfer or transform limited
• Exploit imbalances to get things for free
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